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Abstract—We systematically study 502 unique real-world
smart contract vulnerabilities/exploits in years 2021-2022. We
study how many of them can be exploited by malicious users and
cannot be detected by existing analysis tools. We categorize these
bugs into seven types and study their root causes, distributions,
difficulties to audit (by human auditors), consequences, and
repair strategies. For each type, we abstract them to a bug model,
facilitating finding similar bugs in other contracts and future
automation. We have six main findings. We also leverage these
findings to catch 15 critical zero-day vulnerabilities in auditing,
all capable of inducing severe monetary loss if exploited. They
have been confirmed and fixed by the developers.

I. INTRODUCTION

Since the Bitcoin and blockchain techonology was in-
troduced in 2008, the market capitalization of Bitcoin has
experienced an explosive growth, reaching over $438 billions
(as of 5 August 2022) [1]. Nowadays, there exists countless
blockchain-based products and services for anyone to interact
with, such as those in travel, healthcare, finances, and lately
virtual reality. Blockchains such as Ethereum, Solana, and
Polygon handle millions of transactions everyday. High-level
programming languages like Solidity enable the creation and
integration of numerous innovative ideas with blockchains,
in the form of smart contracts. Just like traditional software
applications, smart contracts are composed by developers
and hence susceptible to human errors. Many of them are
exploitable. According to [2], $1.57 billions were exploited
from various smart contracts as of 1 May 2022.

Due to the importance of ensuring smart contract security,
there have been a large body of existing techniques, including
fuzzers such as [3]–[7], formal verification methods such
as [8]–[14], and runtime verification tools [15], [16]. Despite
the success of existing techniques, smart contract exploits are
still commonly seen in the wild [17]. This may root at the
fundamental differences between smart contract and traditional
software vulnerabilities.

Differences between Smart Contract and Traditional Soft-
ware Vulnerabilities. For traditional software applications, se-
curity vulnerabilities are largely different from functional bugs.
The former has limited forms such as buffer overflow (leading
to code hijacking) [18], information leak [19], and privilege
escalation [20], whereas the latter is very diverse, denoting
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violations of domain-specific and even application-specific
properties. Moreover, functional bugs in traditional software
usually lead to incorrect outputs and/or interrupted services,
which may not cause direct security concerns. In contrast,
smart contract vulnerabilities are in many cases functional
bugs, because due to their unique nature, incorrect outputs
in smart contract usually indicate monetary loss. Finding
these vulnerabilities hence requires checking domain-specific
properties, which is much harder than checking a limited set
of general security properties in traditional software. □

Therefore, we consider that it is highly valuable to summarize
recent smart contract vulnerabilities/exploits to understand the
underlying properties critical to security. In this paper, we
study a large set of 502 unique exploitable bugs from 158
real-world contracts reported/exploited in the past year or so
and aim to summarize their root causes and distributions.
We collect these bugs from the highly reputable Code4rena
contests (with a total of 462 bugs), which invite individuals,
companies, and institutes from all over the world to audit real-
world contracts by providing substantial bounties [21], and
from various real-world exploit reports (e.g., those from [22],
[23]), with a total of 40 exploits. The real world exploits
account for $249.8 millions monetary loss. Among all the
bugs and exploits, we focus on those that can be exploited
by malicious users (instead of contract owners) and cannot
be detected by existing automated tools. For example, we
exclude re-entrance bugs [24] because they could have been
detected by existing tools such as [25]. In the study, we
answer seven research questions such as the root causes of
these vulnerabilities, their consequences, repair strategies, and
distributions. The detailed setup of our study is in Section III.
Compared to existing surveys and studies on smart contract
bugs (e.g., [26]–[29]), we collect the latest bugs and study
them from many unique perspectives such as distributions and
difficulty levels (details in Section XII). Our main findings
are highlighted in the following. Details can be found in
Section IV.

• (Finding 1) Majority of the 502 security bugs (57%)
are in scope, meaning that 43% of them either can be
detected by existing automatic scanning/verification tools
or cannot be exploited by malicious users.

• (Finding 2) These bugs can be grouped into seven cat-
egories based on their root causes: price oracle manip-
ulation, erroneous accounting, ID uniqueness violations,



inconsistent state updates, privilege escalation, atomicity
violations, and implementation specific bugs. Except the
last category (implementation specific bugs) accounting
for 15%, the other categories are general meaning that
they could appear in many contracts. All of them have
severe monetary consequences.

• (Finding 3) Different types of bugs have various levels
of difficulties in auditing (by humans). For example,
erroneous accounting bugs are the most difficult ones
as they require substantial domain knowledge of the
underlying business model formulas. Atomicity violations
rank the second due to the difficulties of reasoning about
transaction interleavings. ID uniqueness violations are the
easiest bugs. Automated tools may offer help as some of
hard ones for humans may not be that hard for machines.

• (Finding 4) Price oracle manipulations are the most popu-
lar type of real-world exploits (38%), although they only
account for 6% of the audit bugs (i.e., bugs found by
auditors in Code4rena) and they are not difficult to find
(the 3rd easiest). The reason is that most the exploited
contracts had not gone through any public auditing. This
suggests the importance of auditing.

• (Finding 5) A few categories are instantiations of known
bugs in the new context of smart contracts, such as atom-
icity violations (8.1%) and privilege escalation (10.4%).
Existing bug detectors may be adapted to automatically
scan them, although there are some domain-specific chal-
lenges to address.

• (Finding 6) The repairs for these bugs are mostly easy,
requiring a few lines of code changes. They also follow
certain patterns, depending on the bug types.

We conduct guided auditing based on these findings and
find 15 critical zero-day vulnerabilities, which could endanger
$22.52 millions funds if exploited. We are able to find at
least one bug for each of the seven categories. Details are
in Section XI. Our contributions are summarized as follows.

• We conduct a comprehensive study of a large number
recent smart contract security bugs.

• We summarize our findings, which may have ramifica-
tions for future work in the area.

• We demonstrate the importance of our findings by our
preliminary success in finding zero-day bugs.

• We compile and explain the needed background knowl-
edge to make sure the paper is self-contained, as the
explanations of many bugs require substantial domain-
knowledge. We provide concrete real-world examples for
each bug category.

Discussions of threats to validity are in Appendix XIV-A.

II. BACKGROUND

Experienced readers can skip this section.
Ethereum Blockchain. The Ethereum Virtual Machine
(EVM) or Ethereum [30] is an advanced framework for the
development of custom financial products and services on
the web. This is made possible through the underlying logic

of blockchain [31], which very abstractly, provides secure
information processing and storage by an append-only public
ledger that keeps track of transactions. Groups of transactions
are collected within a block, where transactions can be mined
by other users known as miners, who use a visible public
key and the hash of a transaction to determine whether the
transaction is valid. Miners then vote on whether to accept
or revert a transaction. This process results in a “consensus
view” of all the transactions. Once transactions within a block
are finished, the block is appended onto the blockchain, and
the internal state of the asset is updated based on transactions
that were accepted by miners. Ethereum requires anyone that
submits a transaction to provide an appropriate amount of gas,
which is a fee paid to miners when they process transactions.
This provides incentives for miners. Ethereum serves as a
platform for developers to create personalized services and
products that utilize not only the security of the blockchain
but also its decentralized nature. There exists no central
authority in the blockchain, as processes are dependent on
the consensus of miners, and everything on the blockchain is
visible to the public, leading to transactions being transparent
and decentralized. As of 29 July 2022, Ethereum has a market
capitalization of more than $210 billions [32].

Smart Contracts. Smart contracts are applications that pro-
vide a collection of functionalities to realize some business
model. They are usually implemented by specific program-
ming languages such as Solidity [33] or Serpent [34], lever-
aging the primitive services provided by Ethereum. Smart
contracts provide a wide variety of services such as currency
(e.g. NFT tokens), trading markets (e.g. OpenSea), borrowing
services (e.g. Nexo), and many more to the developer’s design.
One of the biggest advantages of smart contracts compared
to their physical world counterparts is that they are publicly
available for any willing individual to access and no changes to
the internal states of a smart contract can be hidden, hence the
service transparency. Anyone who interacts with a smart con-
tract to consume its services by calling its functions is known
as a user. Smart contracts are owned by contract owners,
usually the developers. They have access to special functions
in the smart contract that are not callable by other users.

A smart contract provides multiple functionalities, each
wrapped in some function. It has two kinds of functions,
external and internal. The former can be invoked by a user
or the owner and the later can only be invoked by another
function within the contract (not by any user). A transaction
starts when a user invokes some (external) function of a
smart contract. A transaction has atomicity, meaning changes
within a transaction are not visible to the outside world until
it is committed/mined. Usually, the transaction ends when
it is mined and the root external function call returns. A
transaction may fail due to a variety of reasons. When this
happens, the transaction is not applied to the blockchain,
and any internal state changed by the function is undone.
Additionally, all premiums aside from gas fees that were paid
through the function are returned. This is known as a revert.
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In general, the execution model of smart contract allows one
atomic transaction at a time, meaning that it does not allow
another invocation of external function when one is going on.
Smart contracts can interact with each other, constituting a
decentralized finance (DeFi) [35].

Solidity. Solidity [33] is one of the most popular programming
languages for smart contract. Syntax-wise, it is similar to
Java/JavaScript. A contract is similar to a class in Java.
Solidity supports inheritance as well. Inside a contract, there
can be data fields (just like data fields in Java) that may be
public, private, or internal. Solidity supports functions which
may have modifiers such as external indicating a function
can be called by a user and internal, meaning that only
other functions within the contract can call this function.
Additionally, Solidity provides a require operation that asserts
a certain condition. If the assertion fails, an error message is
emitted and the current transaction is reverted. Solidity uses
msg.sender to denote the address of remote user that invokes
the current function, and this to denote the current contract.
Solidity also supports type cast, for example, address(this)
casts the current contract to its address.

Address. On Ethereum and the blockchain, entities such as
users and smart contracts are represented by an address,
or a 20 byte value (e.g., 0xbfDD66a7dE4bB8f494f9
2A5f8D00443CA6cdaFf6).

Tokens and Crypto-currency. With the introduction of the
blockchain, Ethereum, and smart contracts came the need for
currency to be developed in order to realize the business mod-
els that developers envision. Ethereum resolved this issue with
the creation of the ERC (Ethereum Request for Comment) to-
kens. Intuitively, assets are denoted by various kinds of tokens.
Tokens can be split into two categories: fungible tokens and
non-fungible tokens (NFTs). ERC20 [36] tokens are fungible,
meaning that they are non-unique and inter-changeable. An
example would be that denoting a real-world dollar bill. An-
other typical use scenario of fungible tokens are those denoting
ownership of some asset. ERC721 [37] and ERC1155 [38]
tokens are non-fungible, meaning that they are unique in the
making. For example, houses and paintings in the physical
world can be represented by NFTs on Ethereum. Tokens
can be minted (created), transferred, or burned (destroyed)
from a central contract, influencing tokens’ values, which
depend on the amount of real-world assets stored within the
central contract against the amount of tokens in circulation.
For example, one could mint 100 fungible tokens to denote
the ownership of an asset, namely, each token denotes 1%
of ownership. When the asset appreciates, more tokens may
be minted to satisfy additional ownership requests. One could
also choose to burn some tokens to make the remaining ones
more valuable. Users can buy/sell tokens by dealing with their
central contracts.

III. STUDY SETUP

In this section, we explain the detailed setup of our study.

Data Collection. We collect and study 502 unique bugs (not
bug reports) from two sources: the Code4rena contests and
real-world reports. These denote bugs with the criticality level
of high/critical. Public smart contract bugs are usually assigned
a criticality level: low, medium, or high/critical. We exclude
reports at the low and medium levels as these usually cannot
lead to monetary loss. Each Code4rena contest lasts for 3-7
days and has a small number of real-world contracts (e.g.,
1-3), enlisted by developers who commit a bounty in the
range of $20k-1million). Auditors from all over the world,
including companies and individuals, can participate and try
to find bugs in these contracts. After contest, a group of
judges and the developers get together to inspect the bug
reports. They will confirm the real ones and pay the bounties
accordingly. The reward is decided by the criticality level of
bug and the number of reports submitted for the bug (more
submissions lead to a lower reward1). Most the contracts in
the contests are after in-house testing but before deployment.
Developers want to leverage the contests to enhance their
confidence on the product. A badge from Code4rena also
provides a certain level of quality certification. We focus on all
the confirmed bug reports that are published after each contest
at the Code4rena’s official website [39]. Most of them come
with proof of concepts (PoC). There are 462 of them covering
113 contracts in the past one and a half years.

The second source is reports of real-world exploits on Twit-
ter in 2022, which are published by highly-reputable security
researchers (e.g., samczsun [22]) and companies (e.g., [23],
[40], [41]). For each exploit, we collect its report, the on-
chain contract, as well as the on-chain exploit transaction(s) .
Overall, we collect 40 real-world exploits in 2022, all of which
have caused a tremendous amount of direct monetary loss.

Threat Model and Scope of Our Study. In our threat model,
the adversary is a contract user and he crafts special inputs to
exploit the contract. Other attacks such as insider attacks and
spam attacks are out of scope. Insider attacks are launched
by contract owners (who might steal funds leveraging their
owner privileges). In spam attacks, the adversary only setups
a trap and the user has to be lured to take actions leading to
undesirable consequences. We call bugs that do not align with
our threat model the beyond threat model bugs.

We also exclude bugs that (we believe) can be detected
by existing automatic tools, such as [3], [5], to the best of
our knowledge. We call them the machine-auditable bugs.
They include the following: reentrance bugs [24], rounding
and overflow bugs [42], uninitialized variables [43], arbitrary
external function call without control [44], and gas computa-
tion bugs [45].

Study Procedure and Research Questions. We conduct the
study as follows. For each case, we inspect the bug report, the
faulty contract (which is available through Github or on the
blockchain) and its documentation. For those that did not have

1In some extreme situations, a unique medium level bug may get a bounty
of tens of thousands of US dollars, whereas a critical bug found by many is
only rewarded with ten dollars (per report).
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Fig. 1: Break down of bug reports
clear explanations, we further run their PoCs (around 1/5 of
the total cases). To mitigate human mistakes, we ensure that
each bug report has been checked by at least two authors. We
answer the following questions when inspecting each case.

• (RQ1) Is the bug in scope?
• (RQ2) What are the root cause and consequences of the

bug?
• (RQ3) How difficult is it to find the bug in auditing?
• (RQ4) What are the symptoms of the bug? That is, what

kind of code features might indicate its presence?
• (RQ5) How is the bug fixed?
In addition, we answer two more research questions by

aggregating these case studies.
• (RQ6) What are the distribution of these bugs?
• (RQ7) Are there distribution differences between audit-

ing bugs (pre-deployment) and real-world exploits (post-
deployment)? What are the reasons for such differences?

It is in general very difficult to answer RQ3 because it is
subjective. However, the Code4rena contests provide a perfect
platform to quantify bug difficulty. Specifically, each contest
is participated by a large number of independent auditors, who
submit their reports separately. The judges and the developers
classify the bug reports based on the root causes. Although
there are skill level variations of the auditors, the number of
submitted reports for a bug suggests the relative difficulty level
in finding this bug.

IV. STUDY RESULTS

In this section, we present our study results, which are
organized by the research questions.

(RQ1) In-scope Bugs. Fig. 1 presents the break-down of the
502 bugs that we study. The left is for the Code4rena bugs
and the right is the real-world exploits. Observe that 26%
of the Code4rena bugs are beyond our threat model (e.g.,
not exploitable by malicious users) and 15% (we believe)
can be identified by existing automated tools. The remaining
58.7% bugs require substantial manual efforts in auditing. The
distribution of real-world exploits is similar. This suggests the
importance of our study, which hopefully can shed light on
further automating some of these problems.

Table I shows the difficulty in auditing these bugs. The
last column presents the average number of reports for each
bug. Therefore, a smaller number indicates harder-to-find bugs
(denoted by the downward arrow besides the column title).
Observe that the bugs that we study are the most difficult

TABLE I: Auditing difficulty

Type # Reports Avg. Difficulty ↓

In scope bugs 271 2.43673469
Machine auditable 70 2.50819672
Beyond threat model 121 2.62626263
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Fig. 2: Breakdown of different types of bugs in scope

to find. It is unclear if the auditors indeed have used any
automated tools to find the machine auditable bugs.

(RQ2, RQ3, RQ6, and RQ7) Root Causes and Distri-
butions. The 271+26 in-scope bugs can be grouped into
the following 7 categories: (C1) price oracle manipulation;
(C2) erroneous accounting; (C3) ID uniqueness violations;
(C4) inconsistent state updates; (C5) privilege escalation; (C6)
atomicity violations; and (C7) implementation specific bugs.
Their distributions can be found in Fig. 2 and their difficulty
levels can be found in Fig. 3.

(C1) Price Oracle Manipulation. Smart contracts usually re-
sort to external authorities on Ethereum, which usually are
also contracts called price oracles, to determine the price of
an asset. Oracles use certain rules to determine prices (e.g.,
based on reserve balances). However, if an application contract
does not use a price oracle’s APIs properly, the adversary can
interact with the price oracle in a legit way to influence the
price query result returned to the application contract to gain
undeserved profits. More detailed explanation and an example
can be found in Section V. It is one of the most notorious
types of vulnerabilities in the DeFi history, causing at least
$44.8 millions loss in the first half of 2022 alone. As shown
in Fig. 2, it constitutes 6% of the Code4rena bugs (the least
common bug) and 38% of the real-world exploits (the most
common exploit). The difficulty level of auditing such bugs,
as shown in Fig. 3, ranks the 5th out of the 7 types. There is
an interesting discrepancy of their popularity in auditing and
in real-world exploits, even though these bugs are not that
difficult to find. Further inspection shows that most exploited
contracts had not gone through any public audit. They were
hence easy and highly profitable targets.

(C2) Erroneous Accounting. Many smart contracts implement
complex domain-specific financial models. The implementa-
tions hence involve a lot of difficult-to-interpret numerical
computation. We call incorrect implementations of underlying
financial model formulas erroneous accounting bugs (e.g.,
using a wrong coefficient or a wrong formula). These bugs
usually introduce small errors every time they are exercised.
However, these errors can be accumulated to induce substantial

4



2.5000
1.9394

2.9429
2.2889
2.2609

2.1429
3.2308

Price Oracle Manipulation
Erroneous Accounting

ID Uniqueness Violations
Inconsistent State Updates

Privilege Escalation
Atomicity Violations

Contract Impl Specific Bugs
Fig. 3: Difficulty levels of auditing different types of bugs

loss. For example, the Compound Finance [46], a flagship
lending contract supporting time-sensitive variable interest
rates, was exploited and had over $80 millions stolen, due to
an unnoticeable problematic calculation of annual percentage
yield [47]. The bug survived 9 rounds of auditing by top
security companies [48] and even formal verification by a
state-of-the-art commercial tool [49]. It was not found until
being exploited. Fig. 2 shows that it is the most popular type of
Code4rena bugs (27%) and the 4th most popular type of real-
world exploits. Fig. 3 shows that it is also the most difficult
type of bugs. The reason is that finding such bugs requires
substantial domain knowledge. The very broad participation of
the Code4rena contests seems to provide a good coverage of
domain expertise such that a lot of these bugs can be captured
(although each only by very few auditors). More details can
be found in Section VI.

(C3) ID Uniqueness Violations. Most smart contract func-
tionalities are in the form of some entity (e.g., a user or
contract) operating on some asset (e.g., an NFT token). As
such, access control is critical in these processes. For example,
many gambling contracts have functions that blacklist users
from participating, similar to how certain people can be barred
from gambling facilities in the physical world. Accesses are
essentially relations between entities and assets, stating the
permission an entity has on an asset. It is hence critical to
uniquely represent entities and assets. Within smart contract
implementation, entities and assets are usually denoted as
data structures, which usually have an ID field that uniquely
represents an entity/asset. However, developers may forget to
ensure uniqueness of ID fields; they may mistakenly consider
other data fields are unique and use them as as replacement
IDs. As such, the adversary could impersonate an entity or
create a fake/duplicate asset that has the same field value
as some real entity/asset to pass the access control checks
and then perform illegal operations. We call this type of bug
ID uniqueness violations. These vulnerabilities could lead to
direct fund loss of the contracts and/or victim users. One of
the most recent exploits of this category caused 100+ NFTs
or around $1.4 millions to be stolen from a contract [50]. It
constitutes 16% of the Code4rena bugs (43 out of 271) and 4%
of real-world exploits (1 out of 29). It is the 3rd and the 7th
most commonly seen type of bugs in the two respective data
sets. The usual difficulty level of finding such bugs is relatively
low, with an average of around 2.9 auditors per bug in the audit
stage. This could explain the difference in distribution between
contracts in the auditing stage (Code4rena) compared to those
deployed onto the blockchain (real-world).

(C4) Inconsistent State Updates. Smart contracts have many
state variables (e.g., debts and collaterals). There are implicit
correlations between these state variables, such as the credit
limit of a user is proportional to her collateral in a lending
contract. However, when the developers update one variable,
they may forget to update the correlated variable(s) or up-
date incorrectly. An example can be found in Section VIII.
Depending on the state variables that are incorrectly updated,
the consequences of this kind of bugs range from incorrect
statistics to loss of funds. In the recent year, three exploits
[51] [52] [53] caused around $3.8 millions loss and also the
complete collapse of one smart contract’s internal economy.
It constitutes 18% of the Code4rena bugs (49 out of 271) and
10% of the real-world exploits. It is the 3rd most commonly
seen type of bugs in both data-sets. The difficulty level of
finding such bugs is slightly higher than average, with around
2.3 auditors per bug during the Code4rena auditing process.

(C5) Privilege Escalation. Smart contracts often support a
number of business flows, each denoting a unique use case.
For example, a lottery contract needs to support at least three
distinct flows including buying tickets, drawing winners, and
claiming prizes. A business flow may consist of a sequence
of transactions in the temporal order. Within a flow, sensitive
operations are guarded by access control checks. However,
there may be some unexpected business flow to a sensitive
operation along which the access control is weaker than
necessary. This is very similar to privilege escalation bugs that
are very popular in mobile applications [20]. These bugs have
diverse consequences, depending on the sensitive operations
that are not well protected. Nearly $7.5 millions got stolen in
2022, due to privilege escalation bugs. It constitutes 9.2% of
the Code4rena bugs and 11.5% of the real-world exploits. It
is the second most popular type of real-world exploits. The
difficulty of auditing them is about average.

(C6) Atomicity Violations. Multiple business flows (i.e., trans-
action sequences) may interleave and interfere with each
other, by accessing the same state variables. Some business
flows may require business level atomicity, demanding state
variables cannot be accessed by other flows while they are on-
going. Developers do not anticipate such interference and fail
to ensure (business level) atomicity. The reason of these bugs
is that developers mistakenly think atomicity is guaranteed by
the EVM runtime and hence they do not need to be concerned.
However, EVM only ensures each transaction is atomic, and
business flow atomicity, if needed, has to be ensured by the
developers. We provide an example in Section X. Atomicity
violations constitute 8.1% of the Code4rena bugs and 7.7% of
real-world exploits. It is the least common bugs in auditing,
and the second least in the wild. They are much harder to find
(than the others), ranked the 2nd in terms of audit difficulty
(reported 2.1 times on average for each bug). The reason is
that it is difficult to determine business flows and if they
need atomicity. Reasoning about interleavings is also hard for
humans, although it may not be as hard for tools.

(C7) Contract Implementation Specific Bugs. We also find
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that 16% of the Code4rena bugs and 7.7% of the real-world
exploits are implementation specific, meaning that they un-
likely appear in a different smart contract implementation. For
example, implementation is inconsistent with documentation.
We consider these bugs have a low priority because abstracting
these bugs may not provide as valuable guidance as the others.
An example of such bugs is presented in Appendix XIV-D.

(RQ4 and RQ5) Symptoms and Repairs. We will present
our study results of RQ4 and RQ5 in the following sections
when explaining individual attack types, because the concrete
examples in those sections will make such discussions easier.
For each bug type, we will summarize its symptoms and
procedure to an abstract model and also explain its fixes.

V. PRICE ORACLE MANIPULATION

These bugs require additional knowledge. We first introduce
the concepts and then explain such bugs with an example.

Price Oracle and Automated Market Maker. Determining
the price of an asset is a critical functionality for a business
model. In DeFi, it is done by price oracles. Despite a diverse
set of price oracle contracts, the predominant sort is Automate
Market Maker (AMM), which is designed for exchanging two
types of assets, e.g., WETH and USDC (similar to USD in
real-world), with which users can exchange one asset for
another and the exchange rate is decided by a pre-defined
invariant law. In Uniswap [54], a leading AMM contract, the
invariant is denoted by a constant product formula, expressed
as x× y = k, stating that trades must not change the product
k of a pair’s reserve balances (within the contract), e.g., x for
WETH and y for USDC. Driven by the supply and demand
theory [55], the AMM’s reverse balances of the two assets
would reach a dynamic balance, implicitly determining the
price of one asset over the other by their ratio, e.g., y/x
denoting the price of WETH over USDC. Intuitively, more
supply of x leads to its depreciation and y’s appreciation. A
code snippet from Uniswap and its explanation are presented
in Appendix XIV-B.

Example. Consider a Uniswap pair of WETH and USDC with
reserve balances 100 and 400, 000, respectively. The current
price of WETH in Uniswap is hence $4, 000=400, 000/100.
Assume due to the high volatility of cryptocurrenty, the price
of WETH (in the rest of the world) drops drastically to
$1, 000. Assume Alice plans to swap out 100, 000 USDC
from Uniswap by invoking the contract’s exchange function.
According to the constant-product invariant, the contract needs
to hold 100 × 400, 000/(400, 000 − 100, 000) ≈ 133 WETH
after the external call. That is, Alice is required to send
133− 100=33 WETH back to the contract. Taking the 0.3%
contract fee into consideration, the total amount that Alice
needs to pay is only 33/(1−0.003)≈33.1 WETH. It becomes
extremely profitable for Alice, since she pays 33.1 WETH
(worth $33100 since the current real-world price of WETH
is $1, 000) but gets 100, 000 USDC (worth $100, 000) back.
The profit incentive continually attracts arbitragers in the wild
and pushes the Uniswap pair towards the balanced status of

1 contract LendingContract {
2 IERC20 public WETH;
3 IERC20 public USDC;
4 IUniswapV2Pair public pair; // USDC - WETH
5 // debt --> USDC, collateral --> WETH
6 mapping(address => uint) public debt;
7 mapping(address => uint) public collateral;
8
9 function liquidate(address user) external {

10 uint dAmount = debt[user];
11 uint cAmount = collateral[user];
12 require(getPrice() * cAmount * 80 / 100 < dAmount,
13 "the given user’s fund cannot be liquidated");
14 address _this = address(this);
15 USDC.transferFrom(msg.sender, _this, dAmount);
16 WETH.transferFrom(_this, msg.sender, cAmount);
17 }
18 function getPrice() view returns (uint) {
19 return (USDC.balanceOf(address(pair)) /
20 WETH.balanceOf(address(pair)))
21 }
22 }

Fig. 4: Price Oracle manipulation exploit in Deus Finance

an WETH price of $1, 000, i.e., with 200, 000 USDC and 200
WETH reserves, explaining Uniswap’s business model. □

Price Oracle Manipulation. Despite being pivotal for DeFi
project development, price oracles are occasionally used im-
properly by application smart contracts, rendering their price
queries vulnerable to malicious manipulation. It is not a bug
in the price oracle contract, but an issue caused by oracle
misuse in the application contract. For example, although
Uniswap provides an official (and well protected) API for price
queries, application contract developers tend to implement
their own queries (to Uniswap) due to the complexity of the
official one. Furthermore, the customized queries are usually
not exploitable in the traditional finance, but vulnerable in
DeFi, rendering the problem more insidious. A common faulty
code pattern in the application contract is to simply determine
the price by querying the ratio of two assets’ instant balances
in the oracle contract, e.g., balance0/balance1 in lines
13 and 14 in Fig 9 (in Appendix). Note that the correctness
of such a query is guaranteed in the traditional finance, due
to the massive market in which any subtle deviation from
the real-world price is immediately eliminated by arbitrage
actions. However, the situation drastically changes in DeFi.
Recall that block-chain transactions are atomic, so that any
action sequence in a single transaction (i.e., a function invoca-
tion) cannot be interrupted or interleaved with other actions.
Hence, a malicious user can tamper with the price without
the interruptions of arbitragers. It is done by first processing
an exchange (with the oracle), then invoking a function in
the vulnerable application contract which makes an erroneous
query (to the oracle), and finally processing another exchange
(with the oracle) which is the counter version of the first
one. Essentially, the first exchange imbalances the Uniswap
contract in order to manipulate the follow-up price query,
while the second exchange re-balances the Uniswap contract
to avoid losing the (borrowed) funds used in step one. Note
that the three actions are wrapped in a single transaction (a
piece of code written by the adversary), guaranteeing that no
arbitrage behavior can interfere the attack.
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Example. Fig. 4 presents a vulnerable code snippet suffering
from price oracle manipulation. The code snippet is slightly
modified from a real-world exploit against the Deus Finance
which led to a loss of $3.1 millions. The bug survived at
least one publicly-known audit round [56]. Deus is a lending
contract that allows users to deposit WETH as collateral and
borrow USDC. Lines 2-4 define the addresses of WETH,
USDC, and the Uniswap AMM, respectively. Line 6 defines a
mapping debt, which denotes the amount of borrowed USDC
for each user, and line 7 a mapping collateral for the
amount of each user’s deposited WETH. As a lending contract,
Deus supports multiple basic functionalities, including deposit-
ing collateral, withdrawing collateral, getting loans, and paying
debts. The vulnerability lies in function liquidate (line 9)
which forces to close a given user’s ill position, i.e., the user’s
debts exceeds 80% of her collateral. To do so, the function’s
caller, i.e., msg.sender, pays the user’s debt and gets her
collateral. Specifically, the function first checks whether the
position of user is ill (lines 10-13) and processes the token
transfers (lines 14-16). The price oracle is involved when
calculating the real-world value of the collateral, i.e., WETH,
through function getPrice() (defined in lines 18-21). The
function does not use Uniswap API. Instead, it directly queries
the instance balances of USDC and WETH in Uniswap and
uses their ratio as the price. This may consume less gas
compared to using the official API.

To exploit, the adversary drastically decreases the price of
a collateral, forcefully making a victim’s position liquidable.
She then liquidates a valuable collateral with a much smaller
amount of fund. Assume Bob (victim) deposits 100 WETH as
collateral and borrows 100, 000 USDC. Also assume that the
current price of WETH is $4, 000 and the Uniswap pair holds
100 WETH and 400, 000 USDC. Note that Bob’s current posi-
tion is healthy and cannot be liquidated, since the value of his
debt is $100, 000 and his collateral worths $400, 000. Alice,
the adversary, can exploit the aforementioned vulnerability by
encapsulating the following three actions into a single transac-
tion. Specifically, she first exchanges 100 WETH for 200, 000
USDC through UniSwap, making the AMM’s balances of
WETH and USDC 200 and 200, 000, respectively. Note that
although the current real-world price of WETH is $4, 000,
Alice pays 100 WETH for 200, 000 USDC, according to the
constant-product invariant, i.e., 100×400, 000 = (100+100)×
(400, 000−200, 000). Alice then invokes liquidate(Bob),
which succeeds since Bob’s position depreciates with a WETH
price of $1000 (due to the instant balances of WETH and
USDC in the AMM), i.e., 100 × 1000 × 0.8 < 100, 000 at
line 12. By paying 100, 000 USDC, Alice gets 100 WETH
whose real-world value is $400, 000. She acquires a large
profit of $300, 000. After that, Alice re-balances the AMM
by exchanging 200, 000 USDC for 100 WETH, retrieving her
initial attack funds. The bug was fixed by using the Uniswap
official oracle API. □

There are other manifestations of such bugs. For example,
when developers use an official API to return an average price

1 function swap(uint amount1Out, address to) external {
2 token1.transfer(to, amount1Out);
3 IUniswapV2Callee(to).uniswapV2Call();
4
5 uint balance0 = token0.balanceOf(address(this));
6 uint balance1 = token1.balanceOf(address(this));
7 uint amount0In = balance0 - (reserve0 - amount0Out);
8 uint balance0Adj = balance0 * 10000 - amount0In * 22;
9 require(

10 balance0Adj*balance1 >= reserve0* reserve1* 1000,
11 "insufficient funds transferred back");
12 reserve0 = balance0; reserve1 = balance1;
13 }

Fig. 5: The LFW ecosystem exploit

within a time window, namely Time-Weighted Average Price
(TWAP), they may query with a very short window.

Flash Loans. Recall that the aforementioned exploit requires
a tremendous amount of initial funds, i.e., 100 WETH with
$400, 000 real-world value, which seems to hinder the im-
pact of price oracle manipulation. However, flash loan, a
unique and innovative lending model enabled by blockchain
techniques, makes such attacks easily realizable. It allows
users to borrow (a tremendous amount of) debts without
depositing any collateral. It leverages the atomicity of block-
chain transactions, that is, the borrow happens at the beginning
of a transaction and the debt is payed off at the end. An
example can be found in Appendix XIV-C.

Abstract Bug Model (RQ4) and Remedy (RQ5). Given
a price oracle Corc, an application contract C, and lending
contract(s) Cl supporting flash loans, C needs to query Corc

for prices which are based on instant balances (or balances
within a short time) in Corc, and Cl needs to have sufficient
funds to manipulate the balance ratio in Corc. The cost of
the attack is minimum, including just gas and fees, as the
flash loan is paid off at the end. The profit depends on
how much price changes can be induced. To remedy such
bugs, developers simply use official APIs strictly following
the specification (e.g., TWAP with a proper time window), for
both on-chain [54] and off-chain [57] price oracles.

VI. ERRONEOUS ACCOUNTING

As defined in Section IV, this type of bugs are due to
incorrect implementation of the underlying financial model
formulas. They are difficult to find due to the substantial
domain knowledge needed.

Example. Fig. 5 presents a code snippet of the LFW ecosystem,
which has been exploited and lost $0.21 millions. LFW is
an AMM contract that allows exchange of two types of
assets (Section V). A user invokes function swap() to
exchange token0 (the first asset) for token1 (the second)
with LFW. Variables balance0 and balance1 denote the
instant balances of the respective tokens, and reserve0 and
reserve1 their reserve balances (i.e., committed balances).
At line 1, the user specifies the amount of token1 she de-
mands, namely amount1Out, and her address to to receive
token1 and send token0. The main body of the function
is divided into three phases, transferring token1 (line 2),
receiving token0 (line 3), and verifying the constant-product
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1 contract NFTMarketReserveAuction{
2 mapping(address => mapping(uint => uint)) auctionIds;
3 mapping(uint => ReserveAuction) idAuction;
4 uint auctionId;
5
6 function createReserveAuction(
7 address nftContract, uint tokenId) external ...{
8 auctionId++;
9 _transferToEscrow(nftContract, tokenId);

10 auctionIds[nftContract][tokenId] =
11 auctionId;
12 idAuction[auctionId] = NewAuction(
13 msg.sender, ..., tokenId, ...);
14 ...
15 }
16 function _transferToEscrow(
17 address nftContract, uint tokenId) internal ...{
18 uint auctionId =
19 auctionIds[nftContract][tokenId];
20 if (auctionId == 0) { // NFT is not in auction
21 super._transferToEscrow(nftContract, tokenId);
22 return;
23 } ...
24 }
25 }

Fig. 6: The NFTMarketReserveAuction exploit

invariant (lines 5-11), respectively. At line 9, the contract
verifies whether the user sends back a sufficient amount of
token0 such that the constant-product invariant is respected.
The amount of received token0 can be calculated from the
instant and the reserve balances (amount0In at line 7). LFW
charges a contract fee of 0.022%, reflected as balace0Adj
at line 8. The developers use a multiplier of 10, 000 at line
8 (to avoid expensive floating point computation). Lines 9-
11 are supposed to check the invariant. However, the devel-
opers use a wrong multiplier 1, 000. Since the asset prices
are determined by the ratio of their reserve balances, this
bug leads to substantial pricing errors. Consider the actual
invariant checked by the contract, i.e., balance0 × 10 −
amount0In × 0.022 ≥ reserve0 × reserve1 (reduced
from balance0×10000−amount0In×22 ≥ reserve0×
reserve1×1000). The adversary pays only one tenth of the
expected token0 to get token1 he demands. □
Abstract Bug Model (RQ4) and Remedy (RQ5). A con-
tract C is supposed to implement a mathematical model M.
However, the implementation is inconsistent with M (e.g.,
using the wrong coefficients or expressions). The auditor/tool
needs to have the domain-knowledge of the precise form of
M, which is usually not available (in documentation). This
makes finding these bugs difficult (Fig. 3). However, it is
encouraging to see that audit contests provide an effective
way to expose them (these bugs are the most popular kind
among the Code4rena bugs (Fig. 2)), due to the very broad
domain expertise brought by the participants. The fixes are
usually simple, including changing coefficients and rephrasing
arithmetic expressions.

VII. ID UNIQUENESS VIOLATIONS

These bugs are caused by violations of the uniqueness
property of ID fields. They are the 3rd most popular bugs
in the auditing stage.
Example. This is a real case from an auction contract enlisted
for audit in Code4rena [58]. A user acting as a seller can

put their NFT up for auction. The bug was caught by only
one auditor. If exploited, it could make a winning bidder’s
funds locked within the smart contract with no direct way
of recovery. As shown in Fig. 6, to initiate an auction, the
seller calls the function createReserveAuction at line
6 with the parameters of the address of their NFT contract
(nftContract) and the ID of the token they are selling
(tokenId). At line 9, the token is transferred to escrow via
function _transferToEscrow (defined at line 16). Inside
the function, it looks up an auction using the seller’s address
and the token ID (line 19). It then checks if this is a new
auction by checking if auctionID == 0 on line 20. If
so, the NFT is transferred to the escrow via the super class
function at line 21. Then the token is marked as in storage
at line 10 via auctionIds and a new auction is created at
line 12 via NewAuction with all the necessary parameters.
The bug lies in that the developers are essentially using the
seller address and the NFT token ID to denote an auction (their
intention can be inferred from line 19). However, they do not
ensure the uniqueness of these data fields.

It can hence be exploited as follows. A (malicious) seller
invokes createReserveAuction (line 6) twice using the
same nftContract and tokenId. The first invocation
correctly transfers the NFT and creates the auction. In the
second invocation, the lookup at line 19 simply yields the
previously created auction and the check at line 20 falls though
(not reverting). A new (duplicate) auction is created at line
12. Now, there are two auctions for the same NFT. Then
the adversary cancels the first auction to get the NFT back.
However, bidders are still bidding in the duplicate auction.
Eventually, someone wins the auction and the contract is
supposed to transfer the NFT to the winner. However, since
the NFT is already gone, the transfer reverts all the time.
Essentially, all the highest bidders’ funds are locked in the
contract forever. The developers fixed the bug by adding
a check: before a NewAuction is created, the storage of
toTokenIdToAucionId (line 10) is checked to make sure
that the tokenID of the NFT on auction has not been placed
in the auction storage before. □

Abstract Bug Model (RQ4) and Remedy (RQ5). Vari-
ables or data structure fields are used as the ID for some
entity/asset and the access to some critical operation (e.g.,
creating/cancelling an auction) is granted based on the ID.
However, developers do not check the uniqueness of ID fields.
Although this type of bugs is not difficult to find in general,
it may require nontrivial efforts to infer if some variables are
intended to be an ID, especially when the variable names are
not informative. Sometimes, the guarded operation is implicit
and distant from the ID check. Developers usually fix these
bugs by checking for duplication.

VIII. INCONSISTENT STATE UPDATES

In this type of bugs, developers forget to have correlated
updates when they update some variable(s), or the updates do
not respect their inherent relations.
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1 contract SushiTrident{
2 uint128 internal reserve0;
3 uint128 internal reserve1;
4
5 function burn(bytes calldata data)
6 public override lock returns (...) {
7 (... , uint128 amount, address recipient...) =
8 abi.decode(data,(int24, int24, ..));
9 // calculates amounts of each reserve to be returned

10 (uint amount0, uint amount1) =
11 _getAmountsForLiquidity(..., amount);
12 //calculate fees to burn from amounts to burn
13 (uint amount0fees, uint amount1fees) =
14 _updatePosition(msg.sender, ..., -amount);
15 ...
16 reserve0 -= uint128(amount0fees);
17 reserve1 -= uint128(amount1fees);
18 //returns the reserve tokens
19 _transferBothTokens(recipient, amount0, amount1,...)
20 ...
21 }
22 }

Fig. 7: The SushiTrident exploit

Example. Fig. 7 is an example of real world exploit that
was caught during a Code4rena audit. The bug was caught
by only one auditor. The contract itself is an AMM for
exchanging two types of tokens, and also a part of the
Sushi organization, which has a market capitalization of $171
millions [59]. At lines 2-3, reserve0 and reserve1 are
the reserve balances of the two tokens. The bug is in the
burn function, beginning at line 5, which is supposed to
burn a specific type of ownership token called LP Token,
a separate token which designates ownership (shares) of the
entire pool of the two reserve tokens, and return the amounts
of the reserve tokens corresponding to the burned ownership.
This is analogous to cashing out stocks in the physical world.
First at line 7, variables amount, representing the amount of
LP tokens to burn, and recipient address, are unwrapped
from the data parameter. Then, based on the amount (of LP
token) (amount0, amount1) of the two reserve tokens are
generated at line 10. Fees for the burn operation are decided
at line 13. Eventually, the amounts of each reserve token are
updated at lines 16-17. The burner is then transferred the
amounts of each token at line 19. Observe that only the fees
are subtracted from the reserves, and not the actual reserves
returned to the receiver. As such, there appears to be more
tokens within the contract than there actually are, leading to
all sorts of problems like incorrect pricing. Developers patched
this bug by subtracting amount0 and amount1 as well. The
essence is that when the reserves are updated by the fees, they
should be updated by the burned amounts as well. □

Abstract Bug Model (RQ4) and Remedy (RQ5). Without
losing generality, there are two variables x and y, their
operations (e.g., reads, writes, and arithmetic operations) tend
to co-occur due to inherent (and often implicit) relations, such
as amount0 and amount0fee in our example. However, de-
velopers forget some operations that are supposed to co-occur.
Inferring such co-occurrence relations is the key to detecting
these bugs. The fixes entail adding/correcting updates.

1 contract Vote {
2 struct Proposal {
3 uint160 sTime; address newOwner;
4 }
5 IERC20 votingToken;
6 address owner;
7 Proposal proposal;
8
9 function propose() external {

10 require(proposal.sTime == 0, "on-going proposal");
11 proposal = Proposal(block.timestamp, msg.sender);
12 }
13 function vote(uint amount) external {
14 require(proposal.sTime + 2 days > block.timestamp,
15 "voting has ended");
16 votingToken.transferFrom(
17 msg.sender, address(this), amount);
18 }
19 function end() external {
20 require(proposal.sTime != 0, "no proposal");
21 require(proposal.sTime + 2 days < block.timestamp,
22 "voting has not ended");
23 require(votingToken.balanceOf(address(this))*2 >
24 votingToken.totalSupply(), "vote failed");
25 owner = proposal.newOwner;
26 delete proposal;
27 }
28 function getLockedFunds() external onlyOwner { ... }
29 }

Fig. 8: A voting contract vulnerability

IX. PRIVILEGE ESCALATION

These bugs arise when an (unexpected) sequence of func-
tions can be invoked to bypass access control.

Example. Fig. 8 presents a real-world case from an
anonymized contract (upon developers’ request). The code is
completely rewritten to retain anonymity while its essence is
retained. This is a voting contract where users can elect a new
contract owner by voting. In lines 2-4, the contract defines a
data structure Proposal to describe a proposal with sTime
denoting the start time of voting and newOwner the proposed
new owner. There are three state variables votingToken,
owner, and proposal denoting the token used for voting
(line 5), the current contract owner (line 6), and an on-going
proposal (line 7), respectively. Function propose (line 9)
allows a user to propose himself as the new owner, which
creates a new proposal (at line 11) and sets the current block
time as the start time and msg.sender the proposed owner.
Observe that there can only be one on-going proposal (line 10).
Users vote by function vote, in which they send their voting
tokens to the contract (lines 16-17) to support a proposal. Note
that users can only vote in the first two days after the voting
starts, guarded by the require in lines 14-15. The voting
ends two days later, and the decision is made by function
end. Function end first checks whether there is an on-going
proposal (line 20) and whether the voting has lasted for at least
2 days (lines 21-22). In lines 23-24, the function then checks
whether over 50% votingToken holders have voted for the
proposal. If so, a critical operation of setting a new contract
owner is performed (line 25). At line 28, a privileged function
getLockedFunds allows the owner to get all the locked
funds, including the votingToken used for previous votes.
Note that both functions vote and end strictly constrain the
invocation time (i.e., within and beyond the 2-day time slot,
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respectively), which constitutes an access control preventing
the two functions from being invoked at the same time (i.e.,
in a single transaction). Otherwise, an adversary could invoke
function vote with a tremendous amount of flash-loaned
votingToken and force a malicious proposal to go through
(similar to the exploit in Section V). Recall that flash loans
require the multiple attack steps being packed into a single
transaction. The checks on invocation time hence defend such
flash-loan attacks. However, an unexpected call sequence can
evade the access control. Specifically, consider an adversary
proposes herself as the owner. When the time is approaching
the deadline proposal.sTime + 2 days, she launches
a flash-loan attack wrapping the following actions into a
single transaction, including 1) flash-loaning a large amount
of votingToken from its AMM contract, 2) invoking
votingToken.transferFrom, a fund transfer interface
function provided by all ERC20 tokens to directly transfer the
loaned amount to the contract without any access control (as a
token usually has no idea of the high-level business logic), 3)
invoking end to become the owner, 4) getting locked funds
by function getLockedFunds, and 5) paying off the flash-
loan debt. The developers did not anticipate such a business
flow and hence did not guard properly. □

Abstract Bug Model (RQ4) and Remedy (RQ5). Let a
business flow B be a sequence of transactions t1, ..., tn, each
denoting an external function invocation, and n the length of
flow which may be equal to or larger than 1. Assume B has
some critical operation f guarded by a set of access control
checks, denoted as P , a conjunction of multiple checks.
However, there exists an (unexpected) business flow t′1, ... t′m
that can reach f with access control P ′ and P ′ < P (here the
operator < means weaker-than). The challenges of identifying
this type of bugs lie in recognizing sensitive operations, which
may require domain knowledge, and finding the multiple paths
that can lead to the operations. Program analysis tools are
likely helpful. The fixes are to add the missing access control
checks or prevent the unexpected paths.

X. ATOMICITY VIOLATIONS

Due to space limitations, we move it to Appendix XIV-E.

XI. GUIDED AUDITING

Inspired by our findings, we started to audit real-world
contracts using our study as a guidance since April 2022.
By the time of writing, we have found 15 confirmed zero-
days with a few more under the inspection of judges. All the
confirmed ones are ranked critical, meaning that they could
induce substantial monetary loss if exploited. Specifically, we
reported 4 zero-days through Immunefi [60], a public bounty
platform. We also participated in three Code4rena contests and
ranked #1 in one of them, out of the ∼100 teams/individuals
that had submitted at least one valid report. The other two
contest results are still in the hands of judges by the time of
submission. Our aggregated bounty is $102, 659.98 so far and
the total funds protected due to our reports add up to $22.52
millions (based on the market cap of each project by the time

TABLE II: Guided auditing results

Type Bounty Program (4) Code4rena (11)

Price Oracle Manipulation 2 0
Erroneous Accounting 0 2
ID Uniqueness Violations 0 1
Inconsistent State Updates 0 1
Privilege Escalation 1 3
Atomicity Violations 0 2
Contract Impl Specific Bugs 1 2

Total Bug Bounty Awarded 102,659.98 USD
Total Funds Protected 22.52 million USD

of submission). More importantly, we have strategized based
on our findings. For example, we have focused on finding price
oracle manipulations (POM) and privilege escalations (PE),
the two most popular kinds of bugs according to our study.
The results are also quite rewarding. We were granted over
$65k bounty for the two POM bugs we found, and managed
to find 4 PE bugs. The abstract bug models are quite helpful
too. For example, when we were looking for PE bugs, we
first identified a critical operation f (see Section IX) and
then listed their enclosing business flows explicit from the
code, leveraging documentation and code hints such as time
windows and locks. We then exhaustively enumerate other
(usually implicit) operation paths reaching the same f and
check their access control.

Table II summarizes our auditing results. The first column
shows the bug types, the last two columns the number of bugs
we report through the bounty programs and the Code4rena
contests, respectively. The last two rows report the total
bounty received and the total funds protected, respectively.
Observe that we are able to find at least one bug for each
category, supporting the coverage of our categorization and
the effectiveness of our abstract bug models.

XII. RELATED WORK

There exists previous studies of smart contract bugs. Atzei
et al. [26] provide 3 classes of bugs based on where they
are introduced (Solidity, Ethereum, Blockchain), as well as 12
types of security vulnerabilities within the three classes. Their
taxonomy is from a mid-development perspective, including
vulnerabilities such as “calls to the unknown” and “stack size
limit”, and hence different from ours. Demolino et al. [61]
categorize bugs based on common developer pitfalls. Chen
et al. [29] classify bugs into 20 groups, pulling data from
posts on the Ethereum Stack Exchange, a popular Q/A site
for users of Ethereum. Our study differs from the previous
studies, as we approach smart contracts that are in the post-
development auditing stage as well as those that have already
been deployed. Zhang et al. [28] provide a classification of 9
different types of bugs. They study 266 bugs in academic liter-
ature and Github from 2014. SmartDec [62] provides 3 classes
of bugs depending on where they take place: blockchain,
model, and language. This is further divided into 33 bug
types, pulled from bugs before 2018. Dingman et al. [27]
categorize smart contract bugs into 49 master classes from
research publications dating from 2014 to 2019. Most these
studies provide classification but do not study distributions
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or difficulty levels. Many focus on bugs that are nowadays
machine-auditable. In contrast, we study the latest security
bugs and exploits that are not machine-auditable from multiple
unique perspectives. Some bugs may be categorized differently
by different studies. Our classification aims to achieve a good
coverage while enabling abstraction. We consider our study
complementary to these existing studies.

XIII. CONCLUSION

We study 502 smart contract security bugs and exploits. We
categorize them by root causes and study their distributions,
repair strategies, and audit difficulty levels. We have six
findings. We also perform guided auditting based on these
findings and have found 15 critical zero-days in three months
that could endanger $22.52 millions funds if exploited.
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1 contract UniswapV2Pair {
2
3 IERC20 token0; IERC20 token1;
4 uint reserve0; uint reserve1;
5
6 function swapToken0ForToken1(
7 uint amount1Out, address to
8 ) external {
9 token1.transfer(to, amount1Out);

10
11 IUniswapV2Callee(to).uniswapV2Call();
12
13 uint balance0 = token0.balanceOf(address(this));
14 uint balance1 = token1.balanceOf(address(this));
15
16 uint amount0In = balance0 - (reserve0 - amount0Out);
17 uint balance0Adj = balance0 * 1000 - amount0In * 3;
18
19 require(
20 balance0Adj * balance1 >=
21 reserve0 * reserve1 * 1000,
22 "insufficient funds transferred back"
23 );
24
25 reserve0 = balance0; reserve1 = balance1;
26 }
27 }

Fig. 9: The swap function of Uniswap

XIV. APPENDIX

A. Threats to Validity

The internal threat to validity mainly lies in the human
mistakes in the study. Specifically, we may misclassify a bug
and miss a category. To reduce this threat, we ensure each bug
has been examined by at least two authors. The categorization
is agreed on by all the authors. Most authors have extensive
smart contract auditing experience and cyber-security expertise
in general. The external threat to validity mainly lies in the
subjects used in our study. The bugs we study may not be
representative. We mitigate the risk using highly reputable
data sources and a large number of bugs. Since we focus on
recent bug reports, the study may not represent historic bugs
well. However, we argue that studying up-to-date bugs is of
importance due to the fast evolution pace of the field.

B. Price Oracle Example.

Fig 9 presents a code snippet of Uniswap’s swap function,
which instantiates the aforementioned exchange rule. It is
critical to understand this function as most existing price
oracle exploits entail manipulating this contract in a legal
way. The code is simplified for the illustrative purpose, and
hence slightly differs from the real implementation. Starting
from line 1, the code declares a contract UniswapV2Pair.
Lines 3 and 4 define several state variables, including token0
and token1 denoting the two assets for exchange, and
reserve0 and reserve1 standing for the reserve balances
of token0 and token1, respectively. A user invokes func-
tion swapToken0ForToken1() starting from line 6 to
exchange token0 for token1, by specifying the amount
of token1 she demands, namely amount1Out, and her
address to to receive token1 and pay with token0. The
transaction is between the user and Uniswp which owns both
tokens for trading. The main body of the function is divided
into three phases, transferring token1 (line 9), receiving

token0 (line 11), and verifying the constant-product invariant
(lines 13-23), respectively. To transfer token1 to the user’s
contract, at line 9, a standard transfer function of ERC20 is
invoked, which essentially transfers a specified amount of the
underlying asset from the UniswapV2Pair contract to the user.
At line 11, an external function call, i.e., uniswapV2Call,
happens upon the user’s contract, within which the user
transfers a certain amount of token0 back to Uniswap. The
use of external call enables flash-loan, a powerful and unique
feature of DeFi. We will elaborate more on flash-loan later in
the section. Starting from line 13, the contract verifies whether
the constant-product invariant is guaranteed after receiving
the user’s fund, i.e., whether the user sends back a sufficient
amount of token0. Variables balance0 and balance1
denote the current balances of assets (lines 13 and 14), based
on which the amount of received token0 can be calculated
(amount0In at line 16). Uniswap charges a contract fee
of 0.3%, reflected as balace0Adj at line 17. Note that
balance0Adj denotes the amount of the current balance
after charging the contract fee with a multiplier of 1000.
In lines 19-23, the contract compares the product of reserve
balances before and after the exchange. If the check fails,
i.e., the user does not pay a sufficient amount of token0,
the exchange fails with the whole transaction reverted. Given
the atomicity of block-chain transactions, the token transfers
at lines 9 and 11 get reverted as well, without affecting
the user’s and Uniswap’s funds. Also note that the user is
allowed to transfer more funds back, which is profitable for the
contract. The reserve balances reserve0 and reserve1
are updated accordingly at line 25. There is another function
swapToken1ForToken0 for the exchange in the opposite
direction.

C. Flash Loan Example

Uniswap inherently supports flash loans. Specifically, in
Fig 9, Alice specifies the debt amount as amount1Out
and gets the funds at line 9. Within the external call at
line 11, Alice not only trades for arbitrage (or launches the
aforementioned exploit) with the borrowed token1, but also
pays the debts after the trading (or exploit). After line 11, both
balance0 and balance1 remain unchanged, satisfying the
repayment check in lines 19-24.

D. Contract Implementation Specific Bug Example

Fig. 10 is a real-world example of an implementation
bug from an anonymous contract. The code is completely
rewritten to retain anonymity and simplified for illustration
while retaining its essence. This is an NFT market contract,
where users can buy and sell NFTs. Users can be split into
two groups: sellers, who want to sell their NFTs and buyers,
who want to buy NFTs. Sellers sell NFTs by filling orders
represented by the Order data structure (lines 2-5), which
contains the seller’s address (the signer field), a signature
(the signature field), a price for a singular NFT (the
priceperNFT field), and the NFTs that the seller wants to
sell (the nfts array). This order is then made visible for
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1 contract MarketContract{
2 struct Order {
3 address signer; bytes signature;
4 uint pricePerNFT; Item[] nfts;
5 }
6
7 /**
8 Batch buys or sells orders with specific ‘1‘ NFTs.
9 Transaction initiated by an end user.

10 */
11 function takeMultipleOneOrders(
12 Order[] calldata orders) external payable {
13 uint256 totalAmount = 0;
14 for (uint256 i = 0; i < orders.length; i++) {
15 require(validateSignature(orders[i]));
16 totalAmount += orders[i].pricePerNFT;
17 _takeOneOrder(orders[i].signer, orders[i].nfts);
18 }
19 require(msg.value >= totalAmount);
20 }
21 function _takeOneOrder(addresss holder, Item[] nfts)
22 internal {
23 _transferNFTs(holder, nfts);
24 }
25 }

Fig. 10: Implementation specific bug example

any user to see off-chain. Any buyer who is interested in an
order can call a variety of functions to “take” or “fullfill”
the order by paying the price. One of these functions is
the takeMultipleOneOrders function starting at line
11. The function will through all the orders (line 14) that a
buyer wants to fill, and aggregate a total price by updating
the totalAmount variable at line 16. Then, the NFTs
included within the orders are transferred to the buyer via the
function call at line 17, which eventually does the transfers
via the operation at line 23. Finally, there is a statement
at line 19 that requires that the amount the buyer pays to
the function, msg.value, is at least the totalAmount.
However, according to the developer’s comment in lines 7-10,
the function takeMultipleOneOrders should only take
orders with 1 NFT inside. Hence, the totalAmount increase
at line 16 only does so by the pricePerNFT per Order. The
function does not prevent buyers from calling the function with
orders with more than one NFT inside. Therefore, malicious
buyers could call the takeMultipleOneOrders function
with orders including more than one NFT and receive all of
the NFTs for the listed price of one. This exploit is unlikely to
appear in any other contract as it is a very specific inconsis-
tency between code and specification. Developers eventually
patched the bug by providing the necessary checks to satisfy
the conditions needed to call the function. □

E. Atomicity Violations

This type of bugs is caused by the inference between
concurrent business flows that are supposed to have high level
atomicity (higher than the transaction level atomicity).

Example. eFig. 11 presents a real-world vulnerability in
th PancakeSwap lottery contract [63]. It was reported by
an anonymous whitehat and awarded with an undisclosed
bounty [64]. Like lottery in the physical world, the contract
users can buy tickets and the owner randomly draws a winner
every day. Lines 3-6 define the key state variables, including a

1 contract Lottery {
2 // user address -> lottery id -> count
3 mapping (address => mapping(uint64 => uint))
4 public tickets;
5 uint64 winningId; // the winning id
6 bool drawingPhase; // whether the owner is drawing
7
8 // invoked every day to reset a round
9 function reset() external onlyOwner {

10 delete tickets;
11 winningId = 0; drawingPhase = false;
12 }
13 function buy(uint64 id, uint amount) external {
14 require(winningId == 0, "already drawn");
15 require(!drawingPhase, "drawing")
16 receivePayment(msg.sender, amount),
17 tickets[msg.sender][id] += amount;
18 }
19 function enterDrawingPhase() external onlyOwner {
20 drawingPhase = true;
21 }
22 // id is randomly chosen off-chain, i.e., by chainlink
23 function draw(uint64 id) external onlyOwner {
24 require(winningId == 0, "already drawn");
25 require(drawingPhase, "not drawing");
26 require(id != 0, "invalid winning number");
27 winningId = id;
28 }
29 // claim reward for winners
30 function claimReward() external {
31 require(winningId != 0, "not drawn");
32 ...
33 }
34 function multiBuy(uint64[] ids, uint[] amounts)
35 external {
36 require(winningId == 0, "already drawn");
37 uint totalAmount = 0;
38 for (int i = 0; i < ids.lengths; i++) {
39 tickets[msg.sender][ids[i]] += amounts[i];
40 totalAmount += amounts[i];
41 }
42 receivePayment(msg.sender, totalAmount),
43 }
44 }

Fig. 11: The PancakeSwap Lottery vulnerability

three-level mapping tickets indicating the amount of each
ticket bought by each user (multiple tickets of the same ID
can be bought by the same or different users), the winner
(winningId), and a boolean variable indicating whether the
owner is drawing the winner (drawing). Function reset
(line 9) is a privileged function for the owner to start a new
round. Function buy, starting from line 13, allows users to buy
tickets of a specified ID. It first checks that the owner is not
drawing and has not drawn the winner, at lines 14 and 15, and
further processes the payment and updates tickets accord-
ingly. At line 19, function enterDrawingPhase is used to
start the lottery drawing phase. Variable drawingPhase is
essentially a lock for the variable tickets to prevent further
ticket purchase in this round. After entering the drawing
phase, function draw (lines 23-28) is invoked to set the win-
ner, which enables claimReward. There are three business
flows, i.e., buying ticket, drawing winner, and claiming prizes.
Note that the business flow of drawing winner comprises two
functions (enterDrawingPhase and draw), and hence
two transactions. Such a design is critical. Otherwise, an
adversary could observe the winner from the draw transition
in the mempool, and bought a huge amount of tickets with
the winner’s ID. Note that before being mined and finalized
on blockchain, transactions are placed in a mempool and
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visible to the public [65]. Besides, since paying a high gas
fee provides incentives for miners, it allows the adversary to
preempt the draw transaction with his own, and eventually
earning a lot of profit illegally. The contract properly prevents
this by separating the business flow to two transactions and
using a lock drawingPhase to ensure atomicity. However,
another purchase function multiBuy (lines 34-43) does not
respect such atomicity. It is a gas-friendly version of function
buy which allows buying multiple tickets at a time. It updates
tickets accordingly within the loop in lines 39-40, and
receives the payment for all tickets at line 41. However, it does
not use the drawingPhase lock, making the aforementioned
attack possible. This exploit method (preempting a pending
transaction belonging to an atomic business flow by paying a
higher gas fee) is also called front running [66], whose root
cause is usually atomicity violation. □
Abstract Bug Model (RQ4) and Remedy (RQ5). There
are multiple business flows B1, ... and Bm that access some
common state variables (e.g., tickets in our example). An
atomicity violation bug occurs when concurrent business
flows yield unserializable outcome [67] In our example, after
front-running, the amount of tickets for the winner ID is
substantially inflated after the winner is decided and before
the prizes are claimed. Such a result cannot be achieved by
serializing the business flows of drawing winner and claiming
prizes. There are a large body of atomicity violation detection
tools for traditional programming languages such as Java and
C [68]. They may be adapted to detect violations in smart
contracts. However, atomic business flows are usually implicit
(suggested by boolean flags serving as locks and explicit
time bounds). Such challenges need to be addressed during
adaptation. Atomicity violation bugs are usually fixed using
lock variables (e.g., drawingPrase in our example).
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